SUSTAINABLE STRATEGIES MODELING FOR GOVERNMENT FINANCIAL SYSTEM, THE STATE BANKING SYSTEM, AND THE INVESTMENT SYSTEM OF RENEWABLE POWER GENERATION

Keywords: distributed state market, photovoltaic power generating equipment, energy efficiency, government subsidies, bank loans

Abstract

The interaction of the government financial system, the state banking system, and the investment system of renewable photovoltaic (PV) power generation equipment can lead to sustainable strategies of these three parties (including government subsidies and bank loans) in the distributed state PV-market depending on its level of development. However, the instability of power output, caused by the variability and changing nature of renewable energy sources, poses challenges for large-scale power dispatch. In addition, the development of the PV-industry has been constrained by a long period of return on investment in solar photovoltaics and the need for large initial investments. With the rapid development of the sharing economy, the provision of financial support and the sharing of investment risks among investors in the PV-energy have become key means of promoting the PV-industry. State incentive policy was considered an effective approach to significant promotion of PV-systems. Government subsidies reduce the need for large initial investments, and market mechanisms, such as feed-in tariffs and tax rebates, increase return on investment and reduce payback periods. In addition, bank loans are considered another major source of external financing for the development of the PV-industry. Third-party financing with appropriate risk-sharing is considered an effective approach to promote the use of photovoltaic technologies. As government subsidies put pressure on the state budget and bank loans require banks to take significant credit risks, there are clear barriers to governments and banks supporting the development of the PV-industry. By 2022, the issues of computing such targeted government subsidies and bank loans with limited credit risks, which maximize incentives for the diffusion of PV-technologies, remain underdeveloped. The current important issues for suggested numerical studying and modeling are: can government subsidies and bank loans significantly contribute to the diffusion of PV-installations at various levels of the PV-market development; what evolutionarily stable states will be formed at different levels of the PV-market development; how the volume of government subsidies, the share of bank loans, the capacity of PV-installations by investors will affect the evolutionary trajectories of the all PV-market parameters and the transformation of various evolutionarily stable states. To do this, numerical modeling is performed to study the dynamic evolutionary trajectories at different levels of the PV-market development.

References

Горбачук В.М., Шулінок Г.О., Сирку А.А. До вимірювання загальної енергоефективності держав. Теорія оптимальних рішень. 2019. С. 110–115.

Горбачук В.М., Сирку А.А., Сулейманов С.-Б. Механізми прогнозування цін сучасних енергоринків. Економічний простір. 2020. № 159. С. 171–177.

Горбачук В.М., Дунаєвський М.С., Сулейманов С.-Б. Аналіз невтілених активів на недосконалих ринках. Приазовський економічний вісник, 2020, 4 (21). С. 110–117.

Ahonen T. Battle of Kyiv. URL: https://twitter.com/tomiahonen/status/1510276474175115281?fbclid=IwAR2cjyDbfpPlvhLLQWioJSn2HxRcMkuNZqvjGxt14soUkw6YKIEHM4czXyQ (дата звернення: 02.04.2022).

War in the region. A.Demirgüç-Kunt (ed.) World Bank ECA Economic Update. 2022. Spring. 103 p.

Горбачук В.М., Дунаєвський М.С., Сирку А.А. Сучасні питання генерування та накопичення енергії в енергосистемі України. Східна Європа: економіка, бізнес та управління. 2020. Випуск 1 (24). С. 260–268.

Norkin V.I., Gaivoronski A.A., Zaslavsky V.A., Knopov P.S. Models of the optimal resource allocation for the critical infrastructure protection. Cybernetics and Systems Analysis. 2018. Vol. 54. № 5. P. 696−706.

Горбачук В.М., Лупей М.І., Дунаєвський М.С. Підходи до резильєнтності критичних інфраструктур. Science and education for sustainable development. A.Ostenda, V.Smachylo (eds.) Katowice, Poland: University of Technology, Katowice, 2022. P. 87−95.

Гоpбачук В.М., Таpасова Л.Г. Аналіз критичних ситуацій техногенної природи, що призводять до аварій і катастроф у різних галузях господарської діяльності. Київ: Ін-т кібеpнетики ім. В. М. Глушкова АH України, 1993. 28 с. (Пpепpинт / Ін-т кібеpнетики ім. В. М. Глушкова АН України; 93-22).

Ermolieva T., Havlik P., Frank S., Kahil T., Balkovic J., Skalsky R., Ermoliev Y., Knopov P.S., Borodina O.M., Gorbachuk V.M. A risk-informed decision-making framework for climate change adaptation through robust land use and irrigation planning. Sustainability. 2022, 14. 1430.

Haivoronskyy O.O., Ermoliev Yu.M., Knopov P.S., Norkin V.I. Mathematical modeling of distributed catastrophic and terrorist risks. Cybernetics and Systems Analysis. 2015. Vol. 51. № 1. P. 85−95.

Горбачук В., Дунаєвський М., Батіг Л. Нова енергетика й економічні зміни. Економіка. Фінанси. Бізнес. Парадигмальні зрушення в економічній теорії ХХІ ст. А.І.Ігнатюк (ред.) Київ: КНУ імені Т.Шевченка, 2021. С. 45−47.

Zhu X., Liao B., Yang S. An optimal incentive policy for residential prosumers in Chinese distributed photovoltaic market: a Stackelberg game approach. Journal of Cleaner Production. 2021, July. Vol. 308. 127325.

Zhu X., Liao B., Yang S., Pardalos P.M. Evolutionary game analysis on government subsidy policy and bank loan strategy in China’s distributed photovoltaic market. Annals of Mathematics and Artificial Intelligence. 2021, May. https://doi.org/10.1007/s10472-021-09729-3.

Monarca U., Cassetta E., Pozzi C., Dileo I. Tariff revisions and the impact of variability of solar irradiation on PV policy support: the case of Italy. Energy Policy. 2018, August. Vol. 119. P. 307–316.

Chen W., Wei P. Socially optimal deployment strategy and incentive policy for solar photovoltaic community microgrid: a case of China. Energy Policy. 2018, May. Vol. 116. Issue C. P. 86–94.

Mundaca L., Samahita M. What drives home solar PV uptake? Subsidies, peer effects and visibility in Sweden. Energy Research & Social Science. 2020, February. Vol. 60. 101319.

Kaplani E., Kaplanis S. A stochastic simulation model for reliable PV system sizing providing for solar radiation fluctuations. Applied Energy. 2012, September. Vol. 97. P. 970–981.

Miller D., Hope C. Learning to lend for off-grid solar power: policy lessons from World Bank loans to India, Indonesia, and Sri Lanka. Energy Policy. 2000, February. Vol. 28. Issue 2. P. 87–105.

Xu L., Zhang Q., Wang K., Shi X. Subsidies, loans, and companies’ performance: evidence from China’s photovoltaic industry. 2020, February. Applied Energy. Vol. 260. 114280.

Gorbachuk V.M., Shulinok A.G., Syrku A.A. (2019) Do vymiriuvannia zahalnoi enerhoefektyvnosti derzhav [To measuring economy-wide energy efficiency of countries]. Teoriia optymalnykh rishen, pp. 110–115.

Gorbachuk V.M., Syrku A.A., Suleimanov S.-B. (2020) Mekhanizmy prohnozuvannia tsin suchasnykh enerhorynkiv [Price forecasting mechanisms of modern energy markets]. Ekonomichnyi prostir, № 159, pp. 171–177.

Gorbachuk V.M., Dunaievskyi M.S., Suleimanov S.-B. (2020) Analiz nevtilenykh aktyviv na nedoskonalykh rynkakh [The analysis of stranded assets on imperfect markets]. Pryazovskyi ekonomichnyi visnyk, 4 (21), pp. 110–117.

Ahonen T. Battle of Kyiv. Available at: https://twitter.com/tomiahonen/status/1510276474175115281?fbclid=IwAR2cjyDbfpPlvhLLQWioJSn2HxRcMkuNZqvjGxt14soUkw6YKIEHM4czXyQ (accessed April 2, 2022).

War in the region (2022). A.Demirgüç-Kunt (ed.) World Bank ECA Economic Update, Spring, 103 p.

Gorbachuk V.M., Dunaievskyi M.S., Syrku A.A. (2020) Suchasni pytannia heneruvannia ta nakopychennia enerhii v enerhosystemi Ukrainy [The modern issues of electric energy generation and storage in the power grid of Ukraine]. Skhidna Yevropa: ekonomika, biznes ta upravlinnia. 2020. Vypusk 1 (24), pp. 260–268.

Norkin V.I., Gaivoronski A.A., Zaslavsky V.A., Knopov P.S. (2018) Models of the optimal resource allocation for the critical infrastructure protection. Cybernetics and Systems Analysis, Vol. 54, № 5, pp. 696−706.

Gorbachuk V.M., Lupey M.I., Dunaievskyi M.S. (2022) Pidkhody do rezylientnosti krytychnykh infrastruktur [Approaches to critical infrastructure resilience]. Science and education for sustainable development. A.Ostenda, V.Smachylo (eds.) Katowice, Poland: University of Technology, Katowice, pp. 87−95.

Gorbachuk V.M., Tarasova L.H. (1993) Analiz krytychnykh sytuatsii tekhnohennoi pryrody, shcho pryzvodiat do avarii i katastrof u riznykh haluziakh hospodarskoi diialnosti [Analysis of critical situations of man-made nature, leading to accidents and catastrophes in various sectors of economic activity]. Kyiv: In-t kibepnetyky im. V. M. Glushkova AH Ukrainy, 28 p. (Ppeppynt / In-t kibepnetyky im. V. M. Glushkova AN Ukrainy.

Ermolieva T., Havlik P., Frank S., Kahil T., Balkovic J., Skalsky R., Ermoliev Y., Knopov P.S., Borodina O.M., Gorbachuk V.M. (2022) A risk-informed decision-making framework for climate change adaptation through robust land use and irrigation planning. Sustainability, 14, 1430.

Haivoronskyy O.O., Ermoliev Yu.M., Knopov P.S., Norkin V.I. (2015) Mathematical modeling of distributed catastrophic and terrorist risks. Cybernetics and Systems Analysis, Vol. 51, № 1, pp. 85−95.

Gorbachuk V.M., Dunaievskyi M.S., Batih L.O. (2021) Nova enerhetyka y ekonomichni zminy [New energy and economic change]. Ekonomika. Finansy. Biznes. Paradyhmalni zrushennia v ekonomichnii teorii XXI st. A.I.Ihnatiuk (red.) Kyiv: KNU imeni T.Shevchenka, pp. 45−47.

Zhu X., Liao B., Yang S. (2021) An optimal incentive policy for residential prosumers in Chinese distributed photovoltaic market: a Stackelberg game approach. Journal of Cleaner Production, July, Vol. 308, 127325.

Zhu X., Liao B., Yang S., Pardalos P.M. (2021) Evolutionary game analysis on government subsidy policy and bank loan strategy in China’s distributed photovoltaic market. Annals of Mathematics and Artificial Intelligence, May, https://doi.org/10.1007/s10472-021-09729-3.

Monarca U., Cassetta E., Pozzi C., Dileo I. (2018) Tariff revisions and the impact of variability of solar irradiation on PV policy support: the case of Italy. Energy Policy, August, Vol. 119, pp. 307–316.

Chen W., Wei P. (2018) Socially optimal deployment strategy and incentive policy for solar photovoltaic community microgrid: a case of China. Energy Policy, May, Vol. 116, Issue C, pp. 86–94.

Mundaca L., Samahita M. (2020) What drives home solar PV uptake? Subsidies, peer effects and visibility in Sweden. Energy Research & Social Science, February, Vol. 60, 101319.

Kaplani E., Kaplanis S. (2012) A stochastic simulation model for reliable PV system sizing providing for solar radiation fluctuations. Applied Energy, September, Vol. 97, pp. 970–981.

Miller D., Hope C. (2000) Learning to lend for off-grid solar power: policy lessons from World Bank loans to India, Indonesia, and Sri Lanka. Energy Policy, February, Vol. 28, Issue 2, pp. 87–105.

Xu L., Zhang Q., Wang K., Shi X. (2020) Subsidies, loans, and companies’ performance: evidence from China’s photovoltaic industry, February. Applied Energy, vol. 260, 114280.

Article views: 130
PDF Downloads: 93
Published
2022-03-31
How to Cite
Gorbachuk, V., Dunaievskyi, M., & Suleimanov, S.-B. (2022). SUSTAINABLE STRATEGIES MODELING FOR GOVERNMENT FINANCIAL SYSTEM, THE STATE BANKING SYSTEM, AND THE INVESTMENT SYSTEM OF RENEWABLE POWER GENERATION. Economic Scope, (179), 146-152. https://doi.org/10.32782/2224-6282/179-22
Section
MATHEMATICAL METHODS, MODELS AND INFORMATION TECHNOLOGIES IN ECONOMY